You are here : homepage  Publications


Recent Publications

2022


  1. Su, Z.; Zhang, J.; Lu, S.; Xiao, F.-S. Pt Nanoparticles Supported on Nb-Modified TiO2 as an Efficient Heterogeneous Catalyst for the Conversion of Cellulose to Light Bioalcohols. Chem. Commun. 2022, 58 (88), 1234912352. https://doi.org/10.1039/D2CC03845E.


  2. Wu, L.; Qi, C.; Sun, X.; Su, H.; Sun, L.; Zhao, L.; Xiao, F. A Highly Efficient Bi-Functional Zeolite Catalyst for Low Temperature Catalytic Cracking of n-Octane to Produce Propylene: Joint Contribution of Nanogold and Dealumination. Applied Catalysis A: General 2022, 646, 118862. https://doi.org/10.1016/j.apcata.2022.118862.


  3. Dai, Z.; Chen, W.; Kan, X.; Li, F.; Bao, Y.; Zhang, F.; Xiong, Y.; Meng, X.; Zheng, A.; Xiao, F.-S.; Liu, F. Stable Porous Organic Polymers Used for Reversible Adsorption and Efficient Separation of Trace SO2. ACS Macro Lett. 2022, 11 (8), 9991007. https://doi.org/10.1021/acsmacrolett.2c00320.


  4. Wang, H.; Wang, L.; Xiao, F.-S. New Routes for the Construction of Strong MetalSupport Interactions. Sci. China Chem. 2022. https://doi.org/10.1007/s11426-022-1356-3.


  5. Duan, J.; Chen, W.; Wang, C.; Wang, L.; Liu, Z.; Yi, X.; Fang, W.; Wang, H.; Wei, H.; Xu, S.; Yang, Y.; Yang, Q.; Bao, Z.; Zhang, Z.; Ren, Q.; Zhou, H.; Qin, X.; Zheng, A.; Xiao, F.-S. Coking-Resistant Polyethylene Upcycling Modulated by Zeolite Micropore Diffusion. J. Am. Chem. Soc. 2022, 144 (31), 1426914277. https://doi.org/10.1021/jacs.2c05125.


  6. Wu, Q.; Luan, H.; Xiao, F.-S. Theoretical Design for Zeolite Synthesis. Sci. China Chem.2022, 65 (9), 16831690. https://doi.org/10.1007/s11426-022-1307-5.


  7. Fang,  W.; Wang, C.; Liu, Z.; Wang, L.; Liu, L.; Li, H.; Xu, S.; Zheng, A.;  Qin, X.; Liu, L.; Xiao, F.-S. Physical Mixing of a Catalyst and a  Hydrophobic Polymer Promotes CO Hydrogenation through Dehydration. Science 2022, 377 (6604), 406–410. https://doi.org/10.1126/science.abo0356.

      

  8. Kan,  X.; Xiao, S.; Zheng, Y.; Cao, Y.; Xiao, Y.; Liu, F.; Jiang, L.; Xiao,  F.-S. Sustainable Synthesis of Ordered Mesoporous Materials without  Additional Solvents. Journal of Colloid and Interface Science 2022, 619, 116–122. https://doi.org/10.1016/j.jcis.2022.03.100.

      

  9. Wang,  C.; Fang, W.; Liu, Z.; Wang, L.; Liao, Z.; Yang, Y.; Li, H.; Liu, L.;  Zhou, H.; Qin, X.; Xu, S.; Chu, X.; Wang, Y.; Zheng, A.; Xiao, F.-S.  Fischer–Tropsch Synthesis to Olefins Boosted by MFI Zeolite Nanosheets. Nat. Nanotechnol. 2022, 17 (7), 714–720. https://doi.org/10.1038/s41565-022-01154-9.

      

  10. Wang, H.; Qin, M.; Wu, Q.; Cheng, D.-G.; Meng, X.; Wang, L.; Xiao, F.-S. Zeolite Catalysts for Green Production of Caprolactam. Ind. Eng. Chem. Res. 2022. https://doi.org/10.1021/acs.iecr.2c01693.

      

  11. Tang,  Y.; Qi, G.; Wang, S.; Meng, X.; Xiao, F.-S. Recent Development of  Bio-Inspired Porous Materials for Catalytic Applications. Chem. Res. Chin. Univ. 2022. https://doi.org/10.1007/s40242-022-2164-0.

      

  12. Sun, Q.; Xiao, F.-S. Porous Polymeric Catalysts Constructed from Vinylated Functionalities. Acc. Mater. Res. 2022, 3 (7), 772–781. https://doi.org/10.1021/accountsmr.2c00088.

      

  13. 肖丰收; Xiao F.-S. 沸石整体结构的刚性与局部孔道的柔性. 化学进展 2022, 34 (5), 1013. https://doi.org/10.7536/PC220508.

      

  14. Lu,  S.; Zhang, J.; Wu, Z.; Su, Z.; Huang, J.; Liang, Y.; Xiao, F.-S.  Catalytic Oxidation of Ethyl Lactate to Ethyl Pyruvate over Au-Based  Catalyst Using Authentic Air as Oxidant. Catal Surv Asia 2022.https://doi.org/10.1007/s10563-022-09359-7.

      

  15. Yuan,  E.-H.; Li, M.; Zhou, J.-F.; Niu, Y.; Song, Y.-H.; Zhang, K.; Yang,  M.-H.; Jiang, J.; Zhang, B.; Xiao, F.-S.; Liu, Z.-T.; Liu, Z.-W.  Ultrafast Crystallization of Mesoporous Sn-MFI Single Crystals Achieved  by Addition of the Cationic Polyelectrolyte in Starting Gels. Microporous and Mesoporous Materials 2022, 337, 111922. https://doi.org/10.1016/j.micromeso.2022.111922.

      

  16. Li,  H.; Wang, L.; Gao, X.; Xiao, F.-S. Cu/ZnO/Al2O3 Catalyst Modulated by  Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol. Ind. Eng. Chem. Res. 2022, 61 (29), 10446–10454. https://doi.org/10.1021/acs.iecr.2c00172.

      

  17. Wu, Q.; Xu, C.; Zhu, L.; Meng, X.; Xiao, F.-S. Recent Strategies for Synthesis of Metallosilicate Zeolites. Catalysis Today 2022, 390–391, 2–11. https://doi.org/10.1016/j.cattod.2022.01.020.

      

  18. Yu,  R.; Kong, H.; Zhao, Z.; Shi, C.; Meng, X.; Xiao, F.; De Baerdemaeker,  T.; Parvulescu, A.; Müller, U.; Zhang, W. Rare‐earth Yttrium Exchanged  Cu‐SSZ‐39 Zeolite with Superior Hydrothermal Stability and SO 2 ‐Tolerance in NH 3 ‐SCR of NO x. ChemCatChem 2022. https://doi.org/10.1002/cctc.202200228.

      

  19. Wang, X.; Ma, Y.; Wu, Q.; Wen, Y.; Xiao, F.-S. Zeolite Nanosheets for Catalysis. Chem. Soc. Rev. 2022, 51 (7), 2431–2443. https://doi.org/10.1039/D1CS00651G.

      

  20. Luan,  H.; Wu, Q.; Zhang, J.; Wang, Y.; Meng, X.; Xiao, F.-S. Sustainable  Synthesis of Core-Shell Structured ZSM-5@Silicalite-1 Zeolite. Chem. Res. Chin. Univ. 2022, 38 (1), 136–140. https://doi.org/10.1007/s40242-021-1288-y.

      

  21. Zhang,  L.; Han, S.; Wu, Y.; Xie, Y.; Wang, L.; Meng, X.; Xiao, F.-S. Complete  Oxidation of Formaldehyde at Room Temperature over Ag-Loaded Octahedral  Molecular Sieve Synthesized from Solvent-Free Route. Applied Catalysis B: Environmental 2022, 303, 120875. https://doi.org/10.1016/j.apcatb.2021.120875.

      

  22. Xu, H.; Zhu, L.; Wu, Q.; Meng, X.; Xiao, F.-S. Advances in the Synthesis and Application of the SSZ-39 Zeolite. Inorg. Chem. Front. 2022, 9 (6), 1047–1057. https://doi.org/10.1039/D1QI01636A.

      

  23. Wang,  C.; Huang, Y.; Wang, L.; Xiao, F.-S. Structure-Performance Interplay of  Rhodium-Based Catalysts for Syngas Conversion to Ethanol. Mater. Chem. Front. 2022, 6 (6), 663–679. https://doi.org/10.1039/D1QM01457A.

      

  24. Liu, Y.; Wang, L.; Xiao, F.-S. Selective Oxidation of Methane into Methanol Under Mild Conditions. Chem. Res. Chin. Univ. 2022. https://doi.org/10.1007/s40242-022-1428-z.

      

  25. Wang,  L.-X.; Wang, Z.-Q.; Wang, L.; Yang, Z.; Zhu, Q.; Liu, Y.; Fang, W.;  Gong, X.-Q.; Liu, Y.; Liu, X.; Xiao, F.-S. CuS -Mediated Two Reaction  Systems Enable Biomimetic Photocatalysis in CO2 Reduction with Visible  Light. Journal of Energy Chemistry 2022, 65, 497–504. https://doi.org/10.1016/j.jechem.2021.06.003.

      

  26. Ma,  Y.; Tang, X.; Hu, J.; Ma, Y.; Chen, W.; Liu, Z.; Han, S.; Xu, C.; Wu,  Q.; Zheng, A.; Zhu, L.; Meng, X.; Xiao, F.-S. Design of a Small Organic  Template for the Synthesis of Self-Pillared Pentasil Zeolite Nanosheets.  J. Am. Chem. Soc. 2022, 144 (14), 6270–6277. https://doi.org/10.1021/jacs.1c12338.

      

  27. Wu,  Z.; Zhang, J.; Su, Z.; Lu, S.; Huang, J.; Liang, Y.; Tan, T.; Xiao,  F.-S. Selective Conversion of Acetone to Mesitylene over Tantalum  Phosphate Catalysts. Chem. Commun. 2022, 58 (17), 2862–2865. https://doi.org/10.1039/D2CC00016D.

      

  28. Minnebruggen,  S. V.; Baerdemaeker, T. D.; Cheung, K. Y.; Parvulescu, A.-N.; Müller,  U.; Tomkins, P.; Oliveira-Silva, R. de; Meng, X.; Xiao, F.-S.; Yokoi,  T.; Zhang, W.; Sakellariou, D.; Vos, D. D. Alkylation of Isobutane with  Butenes Using OSDA-Free Zeolite Beta. Journal of Catalysis 2022, 406, 206–212. https://doi.org/10.1016/j.jcat.2022.01.007.



2021


  1. Wang,  H.; Wang, L.; Lin, D.; Feng, X.; Chu, X.; Li, L.; Xiao, F.-S.  Titanosilicate Zeolite Supported Pt Nanoparticles with Electronic  Metal-Support Interactions for Efficient Methanol Steam Reforming. Catalysis Today, 2021, 382, 42–47. https://doi.org/10.1016/j.cattod.2021.05.015.

      

  2. Xiao, F.-S.; Li, W. Preface to Special Issue of Chinese Journal of Catalysis in Memory of Professor Qin Xin. Chinese Journal of Catalysis., 2021, 42 (12), 2089–2090. https://doi.org/10.1016/S1872-2067(21)63906-2.

      

  3. Wang,  H.; Luo, Q.; Wang, L.; Hui, Y.; Qin, Y.; Song, L.; Xiao, F.-S. Product  Selectivity Controlled by Manganese Oxide Crystals in Catalytic  Ammoxidation. Chinese Journal of Catalysis, 2021, 42 (12), 2164–2172. https://doi.org/10.1016/S1872-2067(21)63803-2.

      

  4. Tomkins,  P.; Marler, B.; McGuire, R.; Müller, U.; Feyen, M.; Parvulescu, A.-N.;  Zhang, W.; Yokoi, T.; Xiao, F.-S.; Gies, H.; Kolb, U.; Zhao, H.;  Valvekens, P.; De Baerdemaeker, T.; De Vos, D. The Effect of Trivalent  Framework Heteroatoms in Cu-CHA on the Selective Catalytic Reduction of  NO. Applied Catalysis A: General, 2021, 626, 118326. https://doi.org/10.1016/j.apcata.2021.118326.

      

  5. Wang, L.-X.; Wang, L.; Xiao, F.-S. Tuning Product Selectivity in CO2 Hydrogenation over Metal-Based Catalysts. Chem. Sci., 2021. https://doi.org/10.1039/D1SC03109K.

      

  6. Luan,  H.; Lei, C.; Wu, Q.; Sheng, N.; Wang, Y.; Meng, X.; Xiao, F.-S.  Sustainable One-Pot Preparation of Fully Crystalline Shaped Zeolite  Catalysts. Catal. Sci. Technol., 2021, 11 (16), 5650–5655. https://doi.org/10.1039/D1CY00948F.

      

  7. Han,  S.; Tang, X.; Ma, Y.; Wu, Q.; Shi, J.; Li, J.; Meng, X.; Zheng, A.;  Xiao, F.-S. Design of Cobalt–Amine Complex as an Efficient  Structure-Directing Agent for One-Pot Synthesis of Co-SSZ-13 Zeolite. J. Phys. Chem. C, 2021, 125 (29), 16343–16349. https://doi.org/10.1021/acs.jpcc.1c04909.

      

  8. Ma,  Y.; Han, S.; Wu, Q.; Zhu, L.; Luan, H.; Meng, X.; Xiao, F.-S. One-Pot  Fabrication of Metal-Zeolite Catalysts from a Combination of  Solvent-Free and Sodium-Free Routes. Catalysis Today, 2021, 371, 64–68. https://doi.org/10.1016/j.cattod.2020.06.037.

      

  9. Wang, Y.; Wang, C.; Wang, L.; Wang, L.; Xiao, F.-S. Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Acc. Chem. Res., 2021, 54 (11), 2579–2590. https://doi.org/10.1021/acs.accounts.1c00074.

      

  10. Han,  S.; Liu, P.; Ma, Y.; Wu, Q.; Meng, X.; Xiao, F.-S. Calcination-Free  Fabrication of Highly b-Oriented Silicalite-1 Zeolite Films by Secondary  Growth in the Absence of Organic Structure-Directing Agents. Ind. Eng. Chem. Res., 2021, 60 (19), 7167–7173. https://doi.org/10.1021/acs.iecr.1c01102.

      

  11. Wang,  H.; Wang, L.; Lin, D.; Feng, X.; Niu, Y.; Zhang, B.; Xiao, F.-S. Strong  Metal–Support Interactions on Gold Nanoparticle Catalysts Achieved  through Le Chatelier’s Principle. Nat Catal, 2021, 4 (5), 418–424. https://doi.org/10.1038/s41929-021-00611-3.

      

  12. Zhou,  H.; Yi, X.; Hui, Y.; Wang, L.; Chen, W.; Qin, Y.; Wang, M.; Ma, J.;  Chu, X.; Wang, Y.; Hong, X.; Chen, Z.; Meng, X.; Wang, H.; Zhu, Q.;  Song, L.; Zheng, A.; Xiao, F.-S. Isolated Boron in Zeolite for Oxidative  Dehydrogenation of Propane. Science, 2021, 372 (6537), 76–80. https://doi.org/10.1126/science.abe7935.

      

  13. Zhang, J.; Su, Z.; Wu, Z.; Wang, P.; Xiao, F.-S. Basic Carrier Promoted Pt-Catalyzed Hydrogenolysis of Alkaline Lignin. Catalysis Today, 2021, 365, 193–198. https://doi.org/10.1016/j.cattod.2020.06.027.

      

  14. Luan,  H.; Lei, C.; Ma, Y.; Wu, Q.; Zhu, L.; Xu, H.; Han, S.; Zhu, Q.; Liu,  X.; Meng, X.; Xiao, F.-S. Alcohol-Assisted Synthesis of High-Silica  Zeolites in the Absence of Organic Structure-Directing Agents. Chinese Journal of Catalysis, 2021, 42 (4), 563–570. https://doi.org/10.1016/S1872-2067(20)63677-4.

      

  15. Xie,  Y.; Zhang, L.; Jiang, Y.; Han, S.; Wang, L.; Meng, X.; Xiao, F.-S.  Enhanced Catalytic Performance of Methane Combustion over  Zeolite-Supported Pd Catalysts with the Lanthanum. Catalysis Today, 2021, 364, 16–20. https://doi.org/10.1016/j.cattod.2019.11.030.

      

  16. Wang,  C.; Fang, W.; Wang, L.; Xiao, F.-S. Fischer-Tropsch Reaction within  Zeolite Crystals for Selective Formation of Gasoline-Ranged  Hydrocarbons. Journal of Energy Chemistry, 2021, 54, 429–433. https://doi.org/10.1016/j.jechem.2020.06.006.

      

  17. Jin,  Z.; Liu, Y.; Wang, L.; Wang, C.; Wu, Z.; Zhu, Q.; Wang, L.; Xiao, F.-S.  Direct Synthesis of Pure Aqueous H2O2 Solution within Aluminosilicate  Zeolite Crystals. ACS Catal., 2021, 11 (4), 1946–1951. https://doi.org/10.1021/acscatal.0c05103.

      

  18. Tang,  Y.; Dai, Z.; Wang, S.; Chen, F.; Meng, X.; Xiao, F.-S. Metalated Porous  Phenanthroline-Based Polymers as Efficient Heterogeneous Catalysts for  Regioselective CH Activation of Heteroarenes. Chemistry – An Asian Journal, 2021, 16 (17), 2469–2474. https://doi.org/10.1002/asia.202100695.

      

  19. Tang,  Y.; Chen, F.; Wang, S.; Sun, Q.; Meng, X.; Xiao, F.-S. Porous Organic  Phenanthroline-Based Polymer as an Efficient Transition-Metal-Free  Heterogeneous Catalyst for Direct Aromatic CH Activation. Chemistry – A European Journal, 2021, 27 (34), 8684–8688. https://doi.org/10.1002/chem.202100288.

      

  20. Dai,  Z.; Tang, Y.; Zhang, F.; Xiong, Y.; Wang, S.; Sun, Q.; Wang, L.; Meng,  X.; Zhao, L.; Xiao, F.-S. Combination of Binary Active Sites into  Heterogeneous Porous Polymer Catalysts for Efficient Transformation of  CO2 under Mild Conditions. Chinese Journal of Catalysis, 2021, 42, 618–626. https://doi.org/10.1016/S1872-2067(20)63679-8.


2020


  1. Wang, L.; Fang, W.; Wang, L.; Xiao, F.-S. NbOPO4 Supported Rh Nanoparticles with Strong Metal−Support Interactions for Selective CO2 Hydrogenation, ChemSusChem, 2020, 13, 6300-6306. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202001784

      

  2. Zhang,  J.; Shan, Y.; Zhang, L.; Du, J.; He, H.; Han, S.; Lei, C.; Wang, S.;  Fan, W.; Feng, Z.; Liu, X.; Meng, X.; Xiao, F.-S. Importance of  Controllable Al Sites in CHA Framework by Crystallization Pathways for  NH3-SCR Reaction. Applied Catalysis B: Environmental, 2020, 277, 119193. https://doi.org/10.1016/j.apcatb.2020.119193

  3. Wang, H.; Wang, L.; Xiao, F.-S. Metal@Zeolite Hybrid Materials for Catalysis. ACS Cent. Sci., 2020, 6 (10), 16851697. https://doi.org/10.1021/acscentsci.0c01130

     

  4. Wu, Z.; Zhang, J.; Su, Z.; Wang, P.; Tan, T.; Xiao, F.-S. Low-Temperature Dehydration of Ethanol to Ethylene over CuZeolite Catalysts Synthesized from CuTetraethylenepentamine. Ind. Eng. Chem. Res., 2020, 59 (39), 1730017306. https://doi.org/10.1021/acs.iecr.0c01253

      

  5. Yang,  Z.; Li, H.; Zhou, H.; Wang, L.; Wang, L.; Zhu, Q.; Xiao, J.; Meng, X.;  Chen, J.; Xiao, F.-S. Coking-Resistant Iron Catalyst in Ethane  Dehydrogenation Achieved through Siliceous Zeolite Modulation. J. Am. Chem. Soc., 2020, 142 (38), 1642916436. https://doi.org/10.1021/jacs.0c07792

      

  6. Wang, H.; Zhou, H.; Li, S.; Ge, X.; Wang, L.; Jin, Z.; Wang, C.; Ma, J.; Chu, X.; Meng, X.; Zhang, W.; Xiao, F.-S. Strong OxideSupport Interactions Accelerate Selective Dehydrogenation of Propane by Modulating the Surface Oxygen. ACS Catal., 2020, 10 (18), 1055910569. https://doi.org/10.1021/acscatal.0c02782

      

  7. Zhang,  P.; Wang, S.; Ma, S.; Xiao, F.-S.; Sun, Q. Exploration of Advanced  Porous Organic Polymers as a Platform for Biomimetic Catalysis and  Molecular Recognition. Chem. Commun., 2020, 56 (73), 1063110641. https://doi.org/10.1039/D0CC04351F

      

  8. Jiang,  Y.; Zhang, L.; Xie, Y.; Han, S.; Zhu, Q.; Meng, X.; Xiao, F.-S.  Enhanced Catalytic Activity in Propene Oxidation over NaZSM-5  Zeolite-Supported Pt Nanoparticles by Increasing the Zeolite Si/Al  Ratio. Catalysis Today, 2020, 355, 476481. https://doi.org/10.1016/j.cattod.2019.06.075

      

  9. Sun, Q.; Xiao, F.-S. Exploration of Porous Organic Polymers as a Platform for Biomimetic Catalysis, Acta Chimica Sinica, 2020, 78 (9), 827-832.https://doi.org/10.6023/A20060227

      

  10. Wang,  L.-X.; Guan, E.; Wang, Z.; Wang, L.; Gong, Z.; Cui, Y.; Yang, Z.; Wang,  C.; Zhang, J.; Meng, X.; Hu, P.; Gong, X.-Q.;Gates, B. C.; Xiao, F.-S.  Dispersed Nickel Boosts Catalysis by Copper in CO2 Hydrogenation. ACS Catalysis, 2020, 10 (16), 92619270. https://doi.org/10.1021/acscatal.0c00907

      

  11. Sheng,  N.; Ma, Y.; Zhu, Q.; Hong, X.; Zhang, J.; Xu, J.; Deng, F.; Sun, J.;  Feng, Z.; Wang, L.; Meng, X.; Xiao, F.-S. Synthesis of Aluminophosphate  Molecular Sieves in the Alkaline Media. Chemistry -A European Journal, 2020, 26, 11408-11411. https://doi.org/10.1002/chem.202001050

      

  12. Chen,  F.; Wang, S.; Sun, Q.; Xiao, F.-S. Turning on Catalysis: Construction  of Triphenylphosphine Moieties into Porous Frameworks. ChemCatChem, 2020, 12 (12), 3285-3289. https://doi.org/10.1002/cctc.202000467

      

  13. Wang,  C.; Fang, W.; Wang, L.; Xiao, F.-S. Fischer-Tropsch Reaction within  Zeolite Crystals for Selective Formation of Gasoline-Ranged  Hydrocarbons. Journal of Energy Chemistry, 2021, 54, 429–433. https://doi.org/10.1016/j.jechem.2020.06.006

      

  14. Ma, Y.; Wu, Q.; Xie, Y.; Zhang, L.; Meng, X.; Xiao, F.-S. Recent Advances in Organotemplate-Free Synthesis of Zeolites. Current Opinion in Green and Sustainable Chemistry, 2020, 100363. https://doi.org/10.1016/j.cogsc.2020.100363

      

  15. Zhang,  J.; Shan, Y.; Zhang, L.; Du, J.; He, H.; Han, S.; Lei, C.; Wang, S.;  Fan, W.; Feng, Z.; Liu, X.; Meng, X.; Xiao, F.-S. Importance of  Controllable Al Sites in CHA Framework by Crystallization Pathways for  NH3-SCR Reaction. Applied Catalysis B: Environmental 2020, 277, 119193. https://doi.org/10.1016/j.apcatb.2020.119193

      

  16. Zhang,  J.; Chu, Y.; Deng, F.; Feng, Z.; Meng, X.; Xiao, F.-S. Evolution of D6R  Units in the Interzeolite Transformation from FAU, MFI or *BEA into  AEI: Transfer or Reassembly? Inorg. Chem. Front. 2020, 7 (11), 22042211. https://doi.org/10.1039/D0QI00359J

      

  17. Zhang,  F.; Chen, W.; Wu, Q.; Yang, Z.; Wang, L.; Meng, X.; Zhang, B.; Zheng,  A.; Deng, F.; Liu, C.; Xiao, F.-S. Theoretical Prediction from Classical  Equations and Rational Synthesis of Ultrafine LTL Zeolite  Nanocrystals. The Journal of Physical Chemistry C, 2020, 124, 13819-13824. https://doi.org/10.1021/acs.jpcc.0c04315

      

  18. Zhu,  Q.; Wang, Y.; Wang, L.; Yang, Z.; Wang, L.; Meng, X.; Xiao,  F.-S. Solvent-Free Crystallization of ZSM-5 Zeolite on SiC Foam as a  Monolith Catalyst for Biofuel Upgrading. Chinese Journal of Catalysis 2020, 41 (7), 11181124. https://doi.org/10.1016/S1872-2067(20)63550-1

      

  19. Wang,  C.; Zhang, J.; Qin, G.; Wang, L.; Zuidema, E.; Yang, Q.; Dang, S.;  Yang, C.; Xiao, J.; Meng, X.; Mesters, C.; Xiao, F.-S. Direct Conversion  of Syngas to Ethanol within Zeolite Crystals. Chem 2020, 6 (3), 646657. https://doi.org/10.1016/j.chempr.2019.12.007

      

  20. Zhang, J.; Wang, L.; Wu, Z.; Wang, H.; Zhang, B.; Xiao, F.-S. Mesoporous CoAl Oxide Nanosheets as Highly Efficient Catalysts for CO Oxidation. AIChE Journal 2020, 66 (5). https://doi.org/10.1002/aic.16929

      

  21. Wang,  L.; Guan, E.; Wang, Y.; Wang, L.; Gong, Z.; Cui, Y.; Meng, X.; Gates,  B. C.; Xiao, F.-S. Silica Accelerates the Selective Hydrogenation of CO2  to Methanol on Cobalt Catalysts. Nat Commun 2020, 11 (1), 1-9. https://doi.org/10.1038/s41467-020-14817-9

      

  22. Zhang,  J.; Wang, L.; Wu, Z.; Wang, C.; Su, Z.; Xiao, F.-S. Rational Design of a  Core-Shell Rh@Zeolite Catalyst for Selective Diene Hydrogenation. Acta Physico-Chimica Sinica, 2020, 36, 1912001. https://doi.org/10.3866/PKU.WHXB201912001

      

  23. 栾慧敏, 陈伟, 吴勤明, 徐好, 韩世超, 孟祥举, 郑安民, 肖丰收. 使用四乙基氢氧化铵作为有机模板剂和常规硅铝源直接合成SSZ-13沸石分子筛. 高等学校化学学报 2020, 41 (7): 1470-1476. https://doi.org/10.7503/cjcu20200197

      

  24. Wang,  S.; Sun, Q.; Chen, W.; Tang, Y.; Aguila, B.; Pan, Y.; Zheng, A.; Yang,  Z.; Wojtas, L.; Ma, S.; Xiao, F.-S. Programming Covalent Organic  Frameworks for Photocatalysis: Investigation of Chemical and Structural  Variations. Matter 2020, 2 (2), 416427. https://doi.org/10.1016/j.matt.2019.10.026

      

  25. Wang,  H.; Xu, D.; Guan, E.; Wang, L.; Zhang, J.; Wang, C.; Wang, S.; Xu, H.;  Meng, X.; Yang, B.; Gates, B. C.; Xiao, F.-S. Atomically Dispersed Ru on  Manganese Oxide Catalyst Boosts Oxidative Cyanation. ACS Catal. 2020, 10 (11), 62996308. https://doi.org/10.1021/acscatal.0c00485

      

  26. Lei, C., Dong, Z., Martínez, C., MartínezTriguero, J., Chen, W., Wu, Q., Meng, X., Parvulescu, A.N., De Baerdemaeker, T., Müller, U., Zheng, A., Ma, Y., Zhang, W., Yokoi, T., Marler, B., De Vos, D.E., Kolb, U., Corma, A. and Xiao, F.S. A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite. Angewandte Chemie International Edition 2020, 59, 15649-15655. https://doi.org/10.1002/anie.202003282


  27. Jin,  Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C.;  Meng, X.; Yang, H.; Mesters, C.; Xiao, F.-S. Hydrophobic Zeolite  Modification for in Situ Peroxide Formation in Methane Oxidation to  Methanol. Science 2020, 367 (6474), 193-197. https://doi.org/10.1126/science.aaw1108